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SUMMARY 

A wind-tunnel invest igat ion was  made wherein dynamic models t h a t  
inciuded e l a s t i c  simulation were used t o  s t u d y  the f l i g h t  dim-i-actei-istics 
of a swept-wing bomber with p a r a s i t e  swept-wing f i g h t e r s  coupled a t  the 
wing t i p s .  This coupled configuration represents an e f f i c i e n t  towing 
arrangement whereby t h e  operational range of f i g h t e r s  can be increased. 
All bomber rigid-'body freedoms other than roll were eliminated i n  the  
f l i g h t  simulation. The models were coupled wing t i p  t o  wing t i p  with 
f i g h t e r  roll freedom about the  tip-coupling axis .  
trim w a s  provided at a l l  t e s t  conditions by mechanically l inking the  
f i g h t e r  a i le rons  t o  t h e  wing t i p  of the bomber s o  as t o  d e f l e c t  automat- 
i c a l l y  i n  proportion t o  the  r e l a t i v e  bank angle between t h e  f i g h t e r  and 
t h e  bomber. The e f f e c t s  of providing additional ( t o  a i le rons)  f i g h t e r  
la te ra l - t r im moments by skewing the  tip-coupling axis  were a l s o  studied. 

Some f i g h t e r  l a t e r a l  

Results indicated t h a t  sa t i s fac tory  f l i g h t  could be made t o  f u l l -  
s c a l e  simulated speeds of about 400 miles per hour with f i g h t e r  l a t e r a l  
t r i m  provided only by f i g h t e r  a i lerons.  
a i le ron  def lec t ion  r a t i o s  t e s t e d  had only a secondary e f f e c t  on the  
f l i g h t  charac te r i s t ics .  Skewing t h e  tip-coupling ax is  10' w a s  s l i g h t l y  
benef ic ia l ;  however, a f u r t h e r  increase i n  skew angle t o  20' had a pro- 
nounced adverse e f f e c t .  Maximum tes t  speeds f o r  skew angles of 0' and 
loo were l imited by a tendency of the f igh ter  t o  t w i s t  the  bomber wing 
and diverge i n  tors ion.  With a skew angle of 20°, the  f i g h t e r  o s c i l l a t e d  
a t  approximately constant amplitudes about t h e  tip-coupling axis at  
speeds wel l  below the  divergence speeds. The coupled-flight character-  
i s t i c s  were l i t t l e  affected by coupling the f i g h t e r  wing t i p  t o  t h e  
bomber wing t i p  by a shor t  boom which shif ted t h e  f i g h t e r  longi tudinal  
pos i t ion  rearward. The l imit ing speeds for the  coupled configuration 
were considerably lower than the bomber-alone f l u t t e r  speeds. 

Bomber roll freedom and the  
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INTRODUCTION 

The operating range of an a i r c r a f t  can be extended by towing t h e  
a i r c r a f t  over some port ion of t he  f l i g h t .  
t ec t ion  could be maintained on bombing missions beyond the  normal oper- 
ating range of f igh te r s  by towing the  f igh te r s  as pa ras i t e s  t o  be re- 
leased when pro tec t ion  i s  needed. From t h e  standpoint of aerodynamic 
efficiency, t h e  towing can perhaps bes t  be accomplished by coupling t h e  
airplanes wing t i p  t o  wing t i p .  This method of coupling has been pro- 
posed because. t he  f igh te r s  are supported by t h e i r  own l i f t i n g  surfaces  
and the  e f f ec t ive  aspect r a t i o  of t he  coupled configuration i s  increased 
w i t h  a corresponding decrease i n  induced-drag coef f ic ien t .  A s  a fu r the r  
refinement, loads produced by t h e  f i g h t e r  on the  bomber can be decreased 
by coupling t h e  f i g h t e r  t o  t h e  bomber with angular freedom provided 
Proper f i g h t e r  t r i m  s t a b i l i t y  r e l a t i v e  t o  t h e  bomber i s  maintained. The 
f e a s i b i l i t y  of t h i s  towing arrangement has been demonstrated i n  t h e  
Langley f r ee - f l i gh t  tunnel  ( r e f s .  1 t o  3 )  and i n  ac tua l  f l i g h t  ( r e f .  4 ) .  

In  pa r t i cu la r ,  f i g h t e r  pro- 

This type of coupling r e s u l t s  i n  a r e l a t i v e l y  complex unconventional 
s t ruc ture  and complicates any t h e o r e t i c a l  p red ic t ion  of the  f l i g h t  be- 
havior. Equations of motion neglecting t h e  e l a s t i c  cha rac t e r i s t i c s  of 
t h e  wing-tip-coupled configuration have been presented i n  reference 5 
and, i n  addition, wind-tunnel tests t o  da t e  have used r e l a t i v e l y  r i g i d  
models. The e l a s t i c  modes of the  coupled configuration would be ex- 
pected t o  have a f i r s t -o rde r  e f f e c t  on t h e  f l u t t e r  and s t a b i l i t y  charac- 
t e r i s t i c s  as wel l  as the  wing-structure s t rength  requirements. Therefore 
t h e  present tests were made t o  provide information on airplanes coupled 
wing t i p  t o  wing t i p  wherein the  wing e l a s t i c  propert ies  as we l l  as t h e  
complete m a s s  d i s t r i b u t i o n  were accurately scaled.  Rnphasis w a s  placed 
on determining the  maximum speed t o  which a pa r t i cu la r  configuration 
could be s a t i s f a c t o r i l y  flown and t h e  type of s t a b i l i t y  problems encoun- 
t e r e d .  
eliminating most of t he  bomber rigid-body freedoms. 
t h a t  r e s u l t s  frcm t h i s  semispan t e s t  configuration could be used t o  
corroborate fu tu re  theo re t i ca l  analyses; however, any complete configu- 
ra t ion  analysis would have t o  r a t iona l i ze  t h e  e f f e c t s  of t h e  eliminated 
rigid-body freedoms. 

The tests were s implif ied by using a semispan bomber model and 
It was considered 

The inves t iga t ion  w a s  made i n  the  Langley 300 MPH 7- by lO-root 
tunnel. Geometric, s t i f f n e s s ,  and mass parameters representa t ive  of 
present-day operat ional  swept-wing a i r c r a f t  were incorporated i n t o  a 
l / l&-s ize  scaled-speed model t o  give fu l l - sca le  simulation a t  a pressure 
a l t i t u d e  of 20,000 f e e t .  This sca l ing  permitted t e s t i n g  over a wide 
fu l l - sca l e  simulated speed range. Mach and Reynolds number e f f e c t s  were 
not  simulated. 
t h e  coupling axis t o  decrease bomber bending loads and the  e f f e c t s  of 
providing Pighter l a t e r a l  t r im  by a i le rons  and tip-coupling axis skew 
were invest igated.  The e f f ec t s  of bomber roll freedom were a l so  determined. , 

The t e s t  configuration provided f i g h t e r  roll freedom a t  

I 
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C O m I c I m  AND SYMBOLS 
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lift coef f ic ien t ,  lift (twice model l i f t  
f o r  bomber model) G 

moments of i n e r t i a  about body ax is ,  lb-in.  2 
-2 

free-stream dynamic pressure, 

wing area, s q  f t  ( twice area of semispan model) 

y, lb/sq f t  

l o c a l  wing chord, p a r e l l e l  t o  plane of symmetry, 

mean aerodynamic chord of wing using t h e o r e t i c a l  
p / 2  

J o  - c!%y 

3 

used 

f t  

t i p ,  

wing span, perpendicular t o  plane of symmetry, f t  

la teral  dis tance from plane of symmetry, f t  

m a s s  densi ty  of a i r ,  slugs/cu f t  

free-stream veloci ty ,  f t / sec  

angle of a t t ack  of wing-root chord, deg 

angle of a t t ack  of wing-tip chord, deg 

angle of t w i s t  of wing-tip chord r e l a t i v e  t o  wing-root 
chord, pos i t i ve  downward, a - at, deg 

a i l e ron  def lect ion,  measured i n  a plane perpendicular 
t o  a i l e ron  hinge l i ne ,  deg 

angle of hor izonta l  t a i l  r e l a t i v e  t o  longi tudina l  body 
ax is ,  pos i t i ve  when leading edge i s  up, deg 

r e l a t i v e  bank angle between wing t i p s  connecting bomber 
and f igh te r ,  measured i n  a plane perpendicular t o  t h e  
longi tudinal  body axis and considered zero a t  trimmed 
f l i g h t ,  deg ( see  f i g . l ( a ) )  
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skew angle of tip-coupling axis, angle between tip-coupling 
ax is  and longi tudinal  body axis, deg (see f i g .  l(a)) 

general  dimension of length (see t e x t  on se l ec t ion  of 
sca le  f a c t o r )  

2M 
ZF 

sca l e  f ac to r  f o r  length, - 

angular frequency, af, raiiians/sec 

frequency of o sc i l l a t ion ,  cps 

weight of wing per  u n i t  length along e l a s t i c  axis, 
lb / in  . 

s t a t i c  moment of wing about e l a s t i c  axis per  u n i t  
length along the  e l a s t i c  axis, pos i t i ve  ind ica tes  
t r a i l i n g  edge down, in-lb/in.  

pi tching moment of i n e r t i a  of wing about elastic axis 
per u n i t  length along t h e  e l a s t i c  axis, lb-in.2/in. 

wing bending r i g i d i t y ,  lb-in.2 

wing to r s iona l  r i g i d i t y ,  lb-in.2 

Subscripts : 

M r e f e r s  t o  m o d e l  

F refers t o  fu l l - s ca l e  a i rp lane  

MODEL AND APPARATUS 

General Description of Models 

The models were chosen f o r  t h i s  inves t iga t ion  s o  as t o  be repre- 

Model 
sen ta t ive  of  present-day, operat ional ,  swept-wing a i r c r a f t  and the  
bomber w a s  se lec ted  t o  have a high degree of wing f l e x i b i l i t y .  
simulation w a s  based on a survey of fu l l - s ca l e  da ta  ava i lab le  a t  the  
time the inves t iga t ion  w a s  or iginated.  Geometric d e t a i l s  such as 
fuselage cross sect ion and wing height were se lec ted  f o r  model s i m -  
p l i c i ty ;  however, plan-form geometry w a s  considered t o  be c lose ly  
representat ive.  The wings were the  only components i n  which e l a s t i c  
propert ies  were accurately Simulated. A sketch of the  general  
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arrangement of t h e  tes t  configuration i s  presented i n  f igu re  1. Photo- 
graphs of the model mounted i n  t h e  tunnel and associated tes t  equipment 
are shown i n  figure 2. 
a complete f igh te r  model. 
pos i t ions  as shown i n  f igure  1. 
( f i g .  l ( a ) ) ,  the  e l a s t i c  axes intersected at  the wing t i p ;  when coupled 
by a boom ( f i g .  l(b) 1; the f i g h t e r  was shif ted rearwwd qproxLim+,eQ- 
one bomber tip-chord length. Coupling t h e  f i g h t e r  by a boom would be 
expected t o  decrease t h e  aerodynamic efficiency and was t e s t ed  t o  de te r -  
mine the  e f f e c t s  on s t a b i l i t y .  

Tests were made with a semispan bomber model and 
The f i g h t e r  was flown i n  two longi tudina l  

When coupled wing t i p  t o  wing t i p  

For a l l  t e s t s ,  t he  f igh te r  was  coupled t o  t h e  bomber w i t h  roll 
freedom about the coupling ax is  and a l l  other f i g h t e r  motions r e l a t i v e  t o  
t h e  bamber were res t ra ined  by the  coupling. 
provided by mechanically l inking t h e  f igh ter  a i le rons  t o  the bomber wing 
t i p  ( f i g .  2 ( c ) )  s o  t h a t  t he  a i le rons  deflected automatically i n  propor- 
t i o n  t o  t h e  r e l a t i v e  bank angle between the  f i g h t e r  and the  bomber. The 
a i le rons  were rigged t o  maintain a r e l a t ive  bank angle of zero and de- 
f l e c t e d  i n  the  conventional manner, t h a t  is, the  r i g h t  a i l e ron  was  up 
when the  l e f t  a i l e ron  was down. Some additional lateral  trim moment 

a i le rons  t o  de f l ec t  symmetrically; however, t h i s  w a s  not done i n  the  pres- 
en t  invest igat ion.  
aforesaid a i l e ron  moments were provided by skewing the  t ip-coupling ax is  
as shown on f igu re  l ( a )  s o  t h a t  f o r  any skew angle other  than Oo, ro t a t ion  
of the f i g h t e r  about t he  coupling axis resul ted i n  a s t a b i l i z i n g  angle- 
of-at tack increment. 

Fighter  lateral trim was  

a b n ~ t  t h e  t i p - c o q U g  axis  CGLCLCI h ~ ~ e  ~“utained “uji i-lggiiig tiie 

Fighter  l a t e r a l  trim moments supplementary t o  t h e  

Bamber root  conditions simulating symmetric and antisymmetric l a t -  
eral modes were t e s t e d  and are indicated schematically i n  f i g u r e  l ( c ) .  
Symmetric mode tests were m a d e  w i t h  t h e  bomber roo t  locked s o  that the 
wing was  cant i levered from t h e  tunnel  sidewall and t he re  w e r e  no bomber 
rigid-body freedoms. 
w a s  maintained over the bomber wing throughout t he  t es t  speed range, a 
fu l l - s ca l e  bamber weight of 75,000 pounds (bamber semispan model l i f t  of 
23.6 l b )  being assumed. For t he  antisymmetric modes, t h e  bomber w a s  
f r e e  t o  r o l l  about the longi tudinal  body ax is .  In  the f r ee - to - ro l l  tests, 
t h e  l i f t  of t he  bomber wing a t  l a t e r a l  t r i m  would necessar i ly  be l e s s  than 
normal. Therefore t o  have the  model and fu l l - sca l e  lift coe f f i c i en t s  
t h e  same, antisymmetric-mode t e s t s  were a l so  m a d e  with a s t a t i c a l l y  de- 
f l e c t e d  spr ing supplying a preload moment about the  bomber r o l l  axis ,  
i n  t he  d i r ec t ion  shown. The magnitude of t h i s  mament forced t h e  bomber 
wing t o  ca r ry  an equivalent symmetric-mode l i f t  d i s t r i b u t i o n  
( l i f t  = 23.6 l b )  a t  lateral trim. 
s o  t ha t  t h e  bomber-rigid-body roll frequency was extremely low. Changes 
i n  bomber bank angle obtained i n  these t e s t s  had l i t t l e  e f f e c t  on the  
preload mament . 

A n  equivalent bomber-level-flight l i f t  d i s t r i b u t i o n  

The preload springs used were arranged 
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Velocity . . . . . . . . . . . . . .  

_ .  - 

Parameter 

Length . . . . . . . . . . . . . . .  

Frequency . . . . . . . . . . . . .  

Weight per  un i t  length . . . . . . .  

Weight . . . . . . . . . . . . . . .  

3 

Symbol notat ion and sca l e  f a c t o r  

- = A = -  2M 1 
2F 14 
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Select ion of Scale Factors 

A scaled-speed model w a s  considered t o  be the  most p r a c t i c a l  f o r  
t h e  f l i gh t  conditions t o  be simulated i n  t h i s  invest igat ion.  A l imita-  
t i o n  imposed on the  tests was t h a t  t h e  Mach and Reynolds number e f f e c t s  
were no t  simulated. Neglecting Mach and Reynolds number, sca l ing  of t he  
model w a s  based on the  parameters considered s ign i f i can t  t o  f l u t t e r .  
The model was  chosen t o  be 1/14 the  s i z e  of representat ive -full-scale 
airplanes and the  parameters scaled a re  l i s t e d  i n  terms of t he  geometric 
s ca l e  f ac to r  A. I f  2 i s  considered t o  be a general  dimension of length 
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Par m e t e r  

Mass moment of i n e r t i a  
per u n i t  length . . . . . . . . . 

Symbol notat ion and sca le  f a c t o r  

Mass moment of i n e r t i a  . . . . . . . 

Bending r i g i d i t y  . . . . . . . . . . 

Torsion r i g i d i t y  . . . . . . . . . . 

No attempt w a s  m a d e  t o  design a given value of s t r u c t u r a l  damping i n t o  
the  model. The s t r u c t u r a l  damping coeff ic ient  gh of t h e  model bomber 
wing vas 0.012 measured from t h e  first bending mode and calculated 
according t o  t h e  following relationship: 

h Z M  - 'M h5 e- 1.737 
I- ln 
T E  

- _ -  
5 

%? 14' 

(bT\ - _ -  "'M - ?M A3 - 1.737 
(E1)F PF L45 

- 'M - - 1.737 - - -  
(GJ)F % 14~ 
- 

- 1 (logarithmic decrement) gh - II 

This w a s  t h e  only damping coef f ic ien t  measured; however, the  type of  
model construction used would be expected t o  give r e l a t i v e l y  low values 
of' s t r u c t u r a l  damping. 

Model Construct ion D e t  a i  Is 

General d e t a i l s  of model construction and pr inc ipa l  model dimensions 
a r e  given i n  f igures  3, 4, and 5 .  

Bomber.- The wing of the semispan bomber model was of spar-segment 
construction consis t ing of a duraluminum spar t o  which 19 balsa segments 
were attached t o  form t h e  wing surfaces ( f i g .  3 ) .  This simple method of 
construction enabled c l o s e  simulation of predetermined s t r u c t u r a l  prop- 
e r t i e s  and construction d e t a i l s  are shown i n  f igure  5 .  The spar w a s  
designed t o  have t h e  desi-red win(: bending and tors ion  r i g i d i t y  and t h e  
s c g ~ e n t s  attached 50 as -Lo make no contribution t o  t h e  wing s t i f f n e s s .  
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An analysis of the  fu l l - sca le  bomber wing s t i f f n e s s  d i s t r i b u t i o n  
t o  be simulated indicated t h a t  s u f f i c i e n t l y  c lose simulation could be 
obtained with a constant r a t i o  of bending t o  tors ion  r i g i d i t y  

= 1.23 . (m ) A cruciform spar cross s e c t  ion w a s  chosen having the  bas ic  

dimensions shown i n  f igure  6. 
EI/GJ 
direct ion as i n  the  up and down d i rec t ion .  The spar w a s  l i n e a r l y  tapered 
i n  three s teps  along i t s  length t o  give the  desired spanwise s t i f f n e s s  
d is t r ibu t ion  and w a s  located along t h e  wing 38-percent chord l i n e  which 
w a s  the desired e l a s t i c  axis  locat ion.  The var ia t ion  of bending and 
tors ion r i g i d i t y  with dis tance along t h e  e l a s t i c  axis i s  shown i n  
f igure 6. 
loading t h e  wine; before and a f t e r  t h e  segments were attached. 

This cross-section shape gave t h e  desired 
r a t i o  and w a s  about seven times as s t i f f  i n  t h e  chordwise bending 

The values given i n  f i g u r e  6 were v e r i f i e d  by experimentally 

A duraluminum r i b  w a s  glued i n  t h e  center of each b a l s a  segment 
such t h a t  t h e  rib could be attached t o  the  flanges of t h e  cruciform 
spar .  A narrow gap w a s  l e f t  between adjacent segments and t h e  gap w a s  
f i l l e d  by gluing a 1/8-inch-wide s t r i p  of sponge rubber around t h e  air- 
f o i l  section as shown i n  f igure  5 .  The sponge rubber was glued t o  one 
end of each segment and pressed against  t h e  adjacent segment when t h e  
wing was assembled. This type of construction enabled t h e  b a l s a  segments 
t o  be attached t o  the  spar without influencing t h e  spar s t i f f n e s s .  The 
wing could be e a s i l y  assembled and disassembled, allowing f r e e  access 
t o  any portion of t h e  s t ruc ture .  For t h e  speed range tes ted ,  t h i s  
method of f i l l i n g  the  gaps w a s  s a t i s f a c t o r y  i n  t h a t  t h e  sponge rubber 
w a s  n o t  d i s t o r t e d  by a i r  loads. Ballast weights were added t o  each 
balsa segment t o  adjust  t h e  t o t a l  wing m a s s ,  mass unbalance, and mass 
moment of i n e r t i a  t o  the  desired scaled values. Bomber wing weight d i s -  
t r ibu t ion  and engine nacel le  d a t a  a r e  given i n  f i g u r e  7. 
engine nacelles were made of hardwood and the  e l a s t i c  propert ies  of t h e  
fu l l - sca le  nacelles and supports were not simulated. 

The model 

The semispan bomber fuselage had a cy l indr ica l  center  sec t ion  and 
Bomber roll freedom w a s  a fa i red nose and afterbody sect ion ( f i g .  3 ) .  

provided by mounting a segment of t h e  center fuselage sec t ion  and t h e  
wing on a ball-bearing-supported r o l l  yoke which allowed roll freedom 
about the  longitudinal body axis when the  cant i lever  lock w a s  removed. 
The mounting bracket which supported t h e  r o l l  yoke w a s  bol ted t o  t h e  
conventional tunnel balance frame and t h e  angle of a t tack  of t h e  bomber 
w a s  varied i n  t h e  conventional manner. L i f t  of t h e  semispan model w a s  
measured by t h e  tunnel balance system. Mass and i n e r t i a  propert ies  of ,  
t h e  bomber fuselage about t h e  longi tudinal  body ax is  are given i n  t a b l e  I. 

Fighter.- Pr incipal  dimensions of the  f i g h t e r  model are given i n  
figure 4 .  Fighter construction consisted of a c e n t r a l  s t e e l  fuselage 
spar t o  which t h e  wings, t a i l  surfaces,  and fuselage s h e l l  were attached. 
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Longitudinal t r im of the  f i g h t e r  was provided by an all-movable hori-  
zontal  t a i l  which w a s  adjusted manually a t  t h e  model. 
were constructed i n  the  same manner as the bomber wing. S t i f f n e s s  and 
mass d i s t r i b u t i o n  are given i n  f igures  8 and 9. 

angle 
6 t o  r e l a t i v e  bank angle $ could be varied from about 0.6 t o  1.40. 
The ai lerons were actuated by a mechanical linkage t o  the  bomber wing 
t i p  (t ' ig. 2(d)) afid a series of push-pull rods a i d  'veil Cranks coiitairied 
within the  f i g h t e r  wing. The ai leron hinges were connected t o  t h e  spar  
flanges s i m i l a r  t o  t h e  manner i n  which the b a l s a  segments were attached 
and t h e  a i lerons mass balanced about t h e  hinge l i n e .  *Tne fuseiage 

two s t a t i o n s  by through b o l t s  and hardwood mounting ribs glued t o  t h e  
ba lsa  s h e l l .  Complete f i g h t e r  weight and weight d i s t r i b u t i o n  i s  given 
i n  t a b l e  11. 

The f l e x i b l e  wings 

I 
The f i g h t e r  a i lerons 

I 

I were rigged t o  d e f l e c t  asymmetrically i n  proportion t o  t h e  r e l a t i v e  bank 
between t h e  f i g h t e r  and bomber and the  r a t i o  of a i le ron  angle 

I 

I 

I contour w a s  provided by a b a l s a  s h e l l  fastened t o  t h e  fuselage spar at  

Tip-Coupling Hinge 

The tip-coupling hinge provided f igh ter  roll freedom about the  t i p -  
coupling axis and res t ra ined  a l l  other f igh ter  motions r e l a t i v e  t o  t h e  
bomber ( f i g .  2 ( d ) ) .  
r e l a t i v e  angle of a t t a c k  of t h e  f i g h t e r  and bomber wing t i p s  could be 
adjusted. 
of Oo, loo, and 20° r e l a t i v e  t o  t h e  model longi tudinal  body axis 
( r i g .  l ( a ) )  . 
f i g h t e r  wing t i p  ( f i g .  l ( b ) ) .  
unsealed. The scaled mass of the tip-coupling hinge w a s  considered t o  
be representat ive of p r a c t i c a l  ful l -scale  appl icat ions.  

The r o l l  axis w a s  supported by b a l l  bearings and t h e  

I n  addition, the  tip-coupling axis could be s e t  a t  skew angles 

When connected by the  boom, t h e  roll axis w a s  a t  t h e  
The gap between the  model t i p  chords w a s  

Tunnel Safety Devices 

I I n  t e s t i n g  dynamically s i m i l a r  models of t h e  type used i n  t h i s  
invest igat ion,  care  must be taken t o  prevent destruct ion of the  models 
during the  course of t e s t i n g .  Two types of sa fe ty  devices were used i n  
conjunction with t h e  present investigation; namely, rapid reduction of 
tunnel dynamic pressure and l imi ta t ion  of model motion. Preliminary 
t e s t s  
s top procedures d id  not reduce the  t e s t  section dynamic pressure as 
rap id ly  as desired.  Therefore a self-actuating spoi le r  w a s  mounted on 
t h e  tunnel s i d e  w a l l ,  downstream of the  model as shown i n  f igure  2. The 
spoi le r  was held closed ducing normal tes t ing  and, upon release,  pro- 
jected i n t o  the  airstream, and spoiled the flow along the s i d e  w a l l  i n  
t h e  d i f fuser  sect ion of the  tunnel resul t ing i n  a rzpid reduction i n  

I indicated t h a t  t h e  conventional tunnel slow down and emergency 

I t es t - sec t ion  dynamic pressure. 

CONFIDENTIAL 



......................... . 0 .  . 0 .  . 0 .  . ........ . 
0 .  . . . . . . . . . . . . . . . .  0 .  0 .  ...... .............. ..... .... 0 .  0 .  . 
0 .  0 .  0 . .  . c @ & m ~ ~ c " :  **MCA RM L55J24 10 

Model motion w a s  l imited by adjustable  s tops located above and below 
t h e  model as shown i n  f igu re  2. Details of t he  s tops a r e  shown i n  f ig -  
u re  10. 
cylinder r e l a t i v e  t o  the  outer  cylinder.  
above and below t h e  center of gravi ty  of t h e  f igh te r  and t h e  outboard 
bomber nacel le .  
on the upper wing surface of t h e  bomber t o  h i t  t he  upper bomber s top and 
thus prevent damage t o  t he  balsa wing segments. 
model motion exceeded a predetermined amount, t he  model would h i t  t h e  
s t r ik ing  p l a t e  and force t h e  p is ton  against  a spring. A i r  damping w a s  
provided so  t h a t  t h e  s t r i k i n g  p l a t e  returned t o  i t s  o r i g i h a l  pos i t ion  
a t  a r e l a t i v e l y  slow rate thus'preventing t h e  spring energy from being 
returned t o  the model. 
s a t i s f ac to ry  and the  model w a s  not damaged during the  invest igat ion.  

Free motion of t he  model: could be var ied by adjust ing the  inner  
The stops were pdsit ioned 

A s t r i k i n g  bar was  attached t o  t h e  wing spar  and located 

I f  t h e  amplitude of 

The two types of s a fe ty  devices used proved very 

Instrumentation 

The model w a s  instrumented as shown i n  f igu re  l ( a )  so  t h a t  i f  
f l u t t e r  were encountered, t h e  mode shapes cou3rd be determined. The out- 
put  of these  instruments along with tunnel dynamic pressure w a s  recorded 
by a multichannel recording oscil lograph. 
motion p ic tures  were taken simultaneously from two camera s t a t ions ;  one 
located ins ide  the  tunnel,  downstream of the  model ( f i g .  2 ( c ) )  and t h e  
other a t  t h e  tes t - sec t ion  w a l l  opposite and s l i g h t l y  forward of t h e  
model. 

(See f i g .  2 (a) .  ) In addi t ion,  

TESTS 

The t e s t s  were made through a speed range i n  the  Langley 300 MPH 
7- by 10-foot tunnel.  
number with ve loc i ty  i s  given i n  f igu re  11. 

The va r i a t ion  of average test  Mach and Reynolds 

St i l l -Air-Vibrat ion Survey 

A s t i l l - a i r -v ib ra t ion  survey was made of t h e  model t o  determine 
natural  vibrat ionalmodes and frequencies. These modes serve as an 
added check on the  i n e r t i a l  and e l a s t i c  proper t ies  of t h e  model and 
could be used i n  a t heo re t i ca l  f l u t t e r  analysis  of t h e  t es t  configura- 
t i o n .  
modes f o r  t h e  various model configurations are shown i n  f igu re  13. 
model w a s  e l a s t i c a l l y  supported i n  a tes t  a t t i t u d e  and harmonically 
excited over a wide frequency range. 
rigid-body suspension frequencies considerably lower than any v ib ra t iona l  
mode frequencies. 

Photographs of t h e  survey setup a re  shown i n  f igu re  12 and na tu ra l  
The 

The s o f t  e l a s t i c  supports gave 

The modes were exci ted from severa l  pos i t ions  with 
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an electrodynamic shaker (shown i n  f i g .  12 a t  the  inboard bomber nace l le )  
and f o r  the  s m a l l  amount of s t r u c t u r a l  damping present,  n a t u r a l  frequen- 
c i e s  were considered t o  correspond t o  the frequency of m a x i m u m  amplitude 
response. 
of the  peak model response and the  mode shapes were determined v isua l ly  
with t h e  a i d  of a stroboscope. 
with t h e  o u t b s z d  s t r ik , ing bar z ~ d  b m h r  port ion of t h e  tip-coupling hinge 
i n s t a l l e d .  Modes f o r  the  coupled configprations were determined with t h e  
models coupled wing t i p  t o  wing t i p  with the f i g h t e r  a i le rons  rigged f o r  
flight. 
t o  the e l a s t i c  axis  a t  the  model center l ine.  
springs t o  the  free- to-rol l  configuration had no e f f e c t  on t h e  n a t u r a l  
v ibra t ion  modes. 
modes and the  descriptions,  where given, imply predominant charac te r i s t ics .  
Modes higher than the  ones presented generally were not c l e a r l y  defined. 

Resonant frequencies were determined from oscil lograph records 

Modes for  t h e  bomber alone were determined 

m-e hmber-n?5del effect ive visg el2stic rmt V I  perpen6iculm 
Adding t h e  preloaded 

All modes presented i n  f igure  13 are normal coupled 

Wind-On S t a t i c  Tests 

S t a t i c  t e s t s  were made t o  determine the aerodynamic c h a r a c t e r i s t i c s  
cf the  bmber  and f i g h t e r  s e p a a t e l y .  These d=ta  were considered necessax-y 
s o  t h a t  approximate t r i m  angles and relative wing-tip angles could be 
chosen f o r  t h e  i n i t i a l  coupled-flight condition. 
of the  bomber were measured through an angle-of-attack range with the  
model cantilevered from the  tunnel balance as shown i n  f igure  3 .  The 
f i g h t e r  w a s  mounted as shown i n  f i g u r e  14 and provision was m a d e  f o r  
measuring l i f t ,  p i tching moment, and wing-tip t w i s t  through an angle- 
of-attack range. Wing-tip angles of both t h e  f i g h t e r  and bomber were 
measured o p t i c a l l y  by using a cathetometer mounted outside t h e  tes t  
sec t ion  t o  s i g h t  a t a r g e t  attached t o  the wing t i p .  Model s t a t i c  d a t a  
a r e  presented i n  f igure  15 for t h e  bomber and i n  f igure  16 f o r  t h e  
f i g h t e r .  Jet-boundary corrections,  determined by the  method presented i n  
reference 6, have been applied t o  the s t a t i c  t e s t  angles of a t tack .  
Blockage correct ions were negl igible  f o r  the  present t e s t s .  

L i f t  and wing-tip t w i s t  

Wind-On Dynamic Tests 

Tests were made through t h e  speed range f o r  the  three  bomber root  
conditions shown i n  f igure  l ( c )  t o  determine t h e  l imit ing speed t o  which 
t h e  coupled configuration could be flown and t h e  type of s t a b i l i t y  prob- 
l e m s  encountered. Limiting test  speeds were also determined f o r  the  
bomber alone. Tests were made f o r  coupling-axis skew angles of 00, loo, 
and 20' and the  r a t i o  of S / @  w a s  varied from about 0.60 t o  1.40. The 
e f f e c t s  of coupling t h e  f i g h t e r  t o  the  bomber by a boom as shown i n  
f i g u r e  l ( b )  were a l so  determined. 
loaded as shown i n  t a b l e  11, w i t h  the exception of one f l i g h t  made with 
t h e  ex terna l  f u e l  tanks removed (me1 tank weight i s  given i n  f i g .  9 ) .  

All f l i g h t s  were made with the  f i g h t e r  
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Coupled-configuration f l i g h t s  were made i n  the  following manner: 
The f igh ter  horizontal  t a i l  and t h e  r e l a t i v e  angle of a t t a c k  of the  wing 
t i p s  
or ig ina l  s e t t i n g s  were m a d e  from s t a t i c  t e s t s  and once the'model w a s  
flown, l a t e r  adjustments were made based on v i s u a l  observation of t h e  
f l i g h t  behavior. 
t h e  lower safety stops.  
t h e  model would l i f t  off of the  stops and f l y .  
of a t tack provided an addi t ional  control  over the  take-off veloci ty .  
Fl ight  speed w a s  increzsed u n t i l ,  i n  the opinion of t h e  operator,  sa fe  
f l i g h t  could not be made a t  higher speeds due t o  approaching a s t a b i l i t y  
boundary. The model w a s  trimmed as t h e  f l i g h t  speed increased and it 
w a s  necessary t o  shut down the tunnel t o  adjust  the  r e l a t i v e  wing-tip 
angle and f i g h t e r  hor izonta l - ta i l  se t t ing .  
configuration were m a d e  with t h e  safe ty  stops s e t  P a i r l y  c lose t o  t h e  
model but  a f t e r  fami l ia r iza t ion  with the  f l i g h t  charac te r i s t ics ,  the  
stops were moved away from the model t o  allow plenty of f l i g h t  space. 
For the root-locked and free-plus-spring tests, the  bomber l i f t  w a s  
kept constant at 23.6 pounds as the  t e s t  speed w a s  increased t o  simu- 
la te  a fu l l - sca le  level-Plight condition. Bomber l i f t  f o r  t h e  f ree-  
t o - r o l l  root  configuration w a s  j u s t  enough t o  support the  bomber wing 
i n  a horizontal  tunnel posi t ion.  
control over the model lateral t r i m  f o r  bomber-roll freedom t e s t s  by a 
lever  attached t o  t h e  bomber root .  This lever  w a s  used as a quick- 
acting l a t e r a l  control  and once a trimmed condition w a s  established, 
no lever force w a s  applied when determining the  f l i g h t  behavior. 

(% = a, - 8 )  w a s  s e t  f o r  trimmed f l i g h t  at, a given speed. These 

The model w a s  supported i n  the  wind-off condition by 
T e s t  sect ion veloci ty  w a s  then increased u n t i l  

Varying the  model angle 

The f i r s t  f l i g h t s  f o r  a 

The operator w a s  provided an addi t ional  

Motion pictures  and oscil lograph records were taken a t  various 
times throughout the speed range. No model dis turbing techniques 
were used; however, f l i g h t  observations indicated s u f f i c i e n t  model d i s -  
turbance i n  so-called steady f l i g h t  t o  give t h e  t e s t  operator a good 
v isua l  indicat ion of model s t a b i l i t y .  

RESULTS AND DISCUSS ION 

Results of the  present invest igat ion a r e  summarized i n  the  chart  i n  
f igure 17. 
urations and a descr ipt ion of the  model f l i g h t  c h a r a c t e r i s t i c s  which 
l imited t h e  t e s t  speeds are presented. 
of the model test  charac te r i s t ics  has been prepared as a supplement t o  
t h e  present paper and i s  avai lable  on loan from NACA Headquarters, 
Washington, D. C .  

Maximum t e s t  speeds obtained f o r  t h e  various model config- 
I , 

A motion p i c t u r e  showing some 
I 
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I Bamber Alone 

I Maximum t es t  speed of the  bomber alone w a s  limited by f l u t t e r  f o r  
a.l1 t h ree  roo t  conditions tes ted .  
(o r  root  locked) f l u t t e r  speed w a s  s l i gh t ly  lower than t h e  antisym- 
metric (31: root  f r e e )  f l u t t e r  speed and the  latter w a s  not a f fec ted  by 
t h e  addi t ion of t h e  root  spr ing t o  the  model. 

The symmetric configuration f l u t t e r e d  i n  what appeared t o  be a combined 
bending and to r s ion  mode a t  a frequency of 9.1 cps and the  mql i tude  w a s  
divergent.  'me antisymmetric configuration r l u t t e r e d  a t  a frequency of 
9.5 cps i n  predominantly a chordwise bending mode (wing t i p  moved fo re  
and a f t )  = 'This mode d id  not zppear: t o  build 
In  addition, t h e  symmetric f l u t t e r  charac te r i s t ics  were not a f fec ted  by 
reducing t h e  semispan model l i f t  from 23.6 pounds t o  0. 

As shown i n  figure 17, t h e  symmetric 
, 

The speeds l i s t e d  were \ 
I considered t o  be the  lowest values a t  which f l u t t e r  w a s  w e l l  es tabl ished.  

i n  m p l i t u d e  va=r b A J  rania1- y.ruAJ. 

Fighter  Coupled Wing Tip t o  Wing Tip 

Data presented i n  f igure  17 for  the f i g h t e r  and bomber coupled wing 

r o o t  condition generally had l i t t l e  effect  on t h e  maximum speeds obtained. 
Sa t i s fac tory  model f l i g h t  charac te r i s t ics  ex is ted  f o r  a l l  f l i g h t  speeds 
below those l i s t e d .  The term "sat isfactory f l i g h t "  i s  used t o  i nd ica t e  
a trimmed f l i g h t  condition t h a t  appeared t o  be fairly steady and t o  have 
a good degree of s t a b i l i t y .  With f igh ter  lateral  t r i m  provided only by 
f i g h t e r  a i le rons  ( p  = Oo), sa t i s f ac to ry  f l i g h t  was  made t o  fu l l - s ca l e  
simulated speeds of about 400 miles per  hour. Skewing the  t ip-coupling 
axis  loo i n  a d i r ec t ion  t o  provide addi t ional  ( t o  a i l e rons )  f i g h t e r  
l a t e r a l  t r i m  moments was s l i g h t l y  beneficial ;  however, a fu r the r  
increase t o  p = 20' had a pronounced adverse e f f ec t .  

I t i p  t o  wing t i p  were obtained with E/@ r a t i o s  near 1.0. The bomber 

I 

i 

p = Oo and p = loo.- The maximum t e s t  speed f o r  p = 0' and 
p = 10' w a s  l imited by a fairly rapid decrease i n  model s t a b i l i t y  as 
t h e  speed w a s  increased near t he  values given i n  f igu re  17. Based on 
v i sua l  observations, t he  de te r iora t ion  i n  s t a b i l i t y  w a s  believed t o  be 
caused by approaching t h e  c r i t i c a l  speed f o r  t o r s iona l  divergence. This 
divergence tendency, while nonoscillatory i n  nature,  w a s  somewhat e r r a t i c  
and was character ized by a tendency of the f igh te r ,  when dis turbed,  t o  
t w i s t  t he  bomber wing u n t i l  t h e  f i g h t e r  reached a f a i r l y  high a t t i t u d e  
(a, > trim) and then abruptly p i t c h  down through t h e  t r i m  angle of a t t a c k  
before re turning t o  a normal a t t i t u d e  (a = t r i m ) .  Attempts t o  a l l e v i a t e  
t h i s  condition by changes i n  f i gh te r  trim were unsuccessful. A sweptback 
wing i s  usua l ly  considered t o  be divergence free; however, it i s  conceiv- 
able t h a t  t h e  present  coupled configuration could diverge due t o  t h e  la rge  
ex terna l  ( t o  bomber wing) dr iving torque t h a t  could be contributed by 
having t h e  f i g h t e r  aerodynamic center well ahead of t h e  wing e l a s t i c  axis. 

7-0 _-^ -  The l imi t ing  t e s t  speed l ' o r  p = IU L,llCLIl IUI waa ;?l ightl j ;  higher .cLrr- em- 
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nature. However, emphasis should not be placed on small t e s t  speed d i f -  
rerences shown i n  f igu re  17 s ince the  t e s t s  were terminated on t h e  judg- 
ment o f  t he  t e s t  operator and there  w a s  no pos i t i ve  ind ica t ion  of t he  
actual  proximity t o  a s t a b i l i t y  boundary. Varying E / #  from 0.60 t o  
1.40 had no measurable e f f e c t  on t h e  torsional-divergence boundary f o r  
e i ther  p = 0' or p = 10'; however, f o r  s a t i s f ac to ry  f l i g h t  conditions,  
t h e  f igh te r  when dis turbed,  returned t o  l a t e r a l  trim more rap id ly  a t  t h e  
higher €j/@ r a t i o s .  The f i g h t e r  loading w a s  changed f o r  t he  t es t  con- 
d i t i on  indicated i n  f igu re  1.7 by repoving t h e  ex terna l  f u e l  tanks,  how- 
ever, t he re  Was no apparent e f f e c t  on the  f l i g h t  cha rac t e r i s t i c s .  

and the  divergence tendency w a s  somewhat more o s c i l l a t o r y  i n  

p = 20°.- With a tip-coupling skew angle p of 20°, t he  model 
became neut ra l ly  s t ab le  a t  speeds roughly one-half t h e  divergence speeds 
at  the lower skew angles. 
indicate  approximately constant amplitude osc i l l a t ions  of t h e  f i g h t e r  
about t h e  t ip-coupling ax i s .  
and r o l l i n g  of t he  f i g h t e r  coupled with some bending or  r o l l i n g  of t h e  
bomber wing depending on t h e  bomber root  condition. 
( t he  spring was considered t o  apply some root  r e s t r a i n t )  had a tendency 
t o  lower t h e  t e s t  speed a t  which neu t r a l  o sc i l l a t ions  f i rs t  occurred. 
The model response i n  t h i s  mode w a s  not pa r t i cu la r ly  v io l en t  insofar  as 
model s a fe ty  was concerned and t h e  t e s t  speed w a s  increased i n t o  t h e  
neut ra l ly  s t ab le  region, as shown i n  f igu re  1.7, f o r  t h e  root-free-plus- 
spring configuration. Increasing the  t e s t  speed from 64 miles per  hour 
t o  88 miles per hour did not a l t e r  t he  mode of o s c i l l a t i o n  but  increased 
t h e  frequency from 1.5 cps t o  1.8 cps. 
d i t ions ,  neut ra l  o sc i l l a t ions  occurred at a frequency of 1.6 cps a t  
64 miles per hour with the  root  locked and a t  a frequency of 1.8 cps a t  
85 miles per  hour with t h e  root  f r e e .  This ind ica tes  t h a t  t he  f i g h t e r  
o sc i l l a t ion  frequency w a s  a funct ion of test  speed and not bomber roo t  
condition. 
response amplitude. 
€o r  
and increasing t h e  t e s t  speed from 64 miles per hour t o  88 miles per 
hour had no e f f e c t  on the  o s c i l l a t i o n  amplitude (frequency w a s  increased) .  
Wi th  t h e  bomber root  locked a t  a t e s t  speed of 64 miles per  hour, t he re  
w a s  a tendency f o r  t h e  f i g h t e r  o s c i l l a t i o n  amplitude t o  increase  from 
6 = *bo t o  = f13' u n t i l  t h e  f i g h t e r  motion would ge t  out of phase 
w i t h  t h e  bomber wing-bending motion thus reducing t h e  amplitude and t h e  
cycle would then repeat i n  a per iodic  manner. This e f f e c t  of bomber roo t  
condition on f i g h t e r  o s c i l l a t i o n  amplitude appeared t o  be a r e s u l t  of t h e  
manner i n  which the  f i g h t e r  motion w a s  influenced by t h e  bomber-wing 
e l a s t i c  mode f o r  t h e  symmetric or root-locked configuration and by t h e  
bomber-wing mass influence f o r  t h e  antisymmetric or  root-free configura- 
t i o n s .  Neither t h e  neu t r a l  o s c i l l a t i o n  boundary speed nor frequency w a s  
affected by changing the  E / @  
f igh te r  response amplitude w a s  a f fec ted .  

The term "neutral  s t a b i l i t y "  i s  used here t o  

The motion appearred t o  be combined p i tch ing  

Bomber root  r e s t r a i n t  

For the  other  bomber roo t  con- 

However, bomber root  condition d id  have an e f f e c t  on f i g h t e r  
With t h e  r o o t  f r e e  (including f r e e  p lus  spr ing)  and 

8 / #  = 0.92, t h e  f i g h t e r  o s c i l l a t e d  over an amplitude of 6 = +6O 

r a t i o  from 0.65 t o  1.20; however, t h e  
A t  a t e s t  speed of 64 miles per  
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hour f o r  t h e  free-plus-spring root  condition, increasing S / @  from 
0.65 t o  1.20 decreased t h e  f i g h t e r  o sc i l l a t ion  amplitude from 9' 
t o  $4 = +p. 
wind-off na tu ra l  frequency and the  motion appeared t o  be  predominantly 
a f i g h t e r - s t a b i l i t y  mode modified by the bomber wing mass o r  e l a s t i c  
i n f  h e n c e .  

@ 
I The neu t r a l  o s c i l l a t i o n  frequency w a s  lower khan any model 

Fighter  Coupled on Boom 

I n  an attempt t o  increase t h e  model divergence speed, t h e  f i g h t e r  
was coupled t o  t h e  bomber by a boom which s h i f t e d  t h e  f i g h t e r  longi tudinal  
pos i t ion  approximately one bomber tip-chord length rearward (Pig.  1). 
This decreased t h e  mament arm between the f i g h t e r  aerodynamic center and 
t h e  bomber-wing e l a s t i c  axis. However, as shown i n  f igu re  17, a s h i f t  
i n  f i g h t e r  pos i t ion  of t h i s  magnitude had no appreciable e f f e c t  on t h e  
s t a b i l i t y  boundaries. I n  addition, t he  s teady-f l ight  cha rac t e r i s t i c s  
below the  speeds l i s t e d  i n  f igu re  17 were very s imi la r  t o  t h e  steady- 
f l i g h t  cha rac t e r i s t i c s  when coupled wing t i p  .to wing t i p .  

I CONCLUSIONS 

A dynamically s i m i l a r  model study was m a d e  t o  determine t h e  maximum 
speed a t  which f l i g h t  could be simulated f o r  a pa r t i cu la r  coupled-airplane 
configuration. Full-scale-wing e l a s t i c  proper t ies  were accurately simu- 
la ted .  The swept-wing bomber and swept-wing f i g h t e r  were coupled wing 
t i p  t o  wing t i p  with f i g h t e r  r o l l  freedom about t h e  coupling axis .  
Results indicated t h e  following conclusions: 

1. Sa t i s f ac to ry  f l i g h t  w a s  m a d e  t o  f u l l - s c a l e  simulated speeds of 
about 400 miles per  hour with f i g h t e r  l a t e r a l  trim provided only by 
f i g h t e r  a i le rons .  Bomber r o l l  freedom and va r i a t ion  i n  a i l e ron  def lec-  
t i o n  t o  r e l a t i v e  bank angle r a t i o  from 0.60 t o  1.40 had only secondary 
efPects on the  f l i g h t  cha rac t e r i s t i c s .  

I 

2 .  Skewing the  tip-coupling ax is  10' i n  a di rec t ion  t o  provide 
addi t iona l  ( t o  a i l e rons )  f i g h t e r  l a t e r a l  t r i m  moments w a s  s l i g h t l y  bene- 
f i c i a l ;  however, a fu r the r  increase i n  skew angle t o  20' had a pronounced 
adverse e f f e c t .  

i 
~ 

~ 

3 .  Maximum test  speed f o r  skew a n g l e s  of 0' and 10' w a s  l imited by 
approaching t h e  c r i t i c a l  _speed f o r  to rs iona l  divergence; with a skew 
angle of 20°, t h e  model became neutral ly  s t a b l e  at speeds wel l  below t h e  
divergence speeds. 
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4. The coupled-model f l i g h t  cha rac t e r i s t i c s  were l i t t l e  affected 
by coupling t h e  f i g h t e r  wing t i p  t o  the  bomber wing  t i p  by a boom which 
sh i f ted  the  f i g h t e r  longi tudinal  pos i t ion  approximately one bomber wing- 
t i p  chord length rearward. 

5 .  The l imi t ing  speeds f o r  t h e  coupled configuration were consid- 
erably lower than t h e  bomber-alone f l u t t e r  speeds. 

Langley Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field,  Va.,  November 9, 1955. 
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TABLE I 

BOMBER FUSELAGE MASS DATA 

Moment of i n e r t i a  about longi tudinal  body ax is ,  lb-in.* . . . . . 59.4 
S t a t i c  moment about longi tudinal  body axis (rolls 

r igh t  semisppn wing t o  t h e  l e f t ) ,  in-lb . . . . . . . . . . . . . 10 

TABU I1 

COMPUTE FIGHTER MODEL MASS DATA 

[Includes ex terna l  f u e l  tanks] 

Weight, lb . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 
Center-of-gravity locat ion,  mean aerodynamic chord . . . . . . . 0.215 
I, , lb-in.2 . . . . . . . . . . . . . . . . . . . . . . . . .  340 
In, 1b-in.2 . . . . . . . . . . . . . . . . . . . . . . . . . 590 

905 Izz, lb-in.2 . . . . . . . . . . . . . . . . . . . . . . . . . 
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coupling ax is  - -  A 
( b )  Fighter coupled t o  bomber by boom. - Roo t locked 

Free  to ro l l  

1 I , v ? r e  loaded spring 

Preload moment = 260 in. /b 

f ree  + Spring I I  I 

( c )  Bomber root conditions t e s t e d .  

Figure 1.- Concluded. 
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Figure 6.- Variation of bending and tors ion 
dis tance along e l a s t i c  

r i g i d i t y  of bomber wing with 
axis. 
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Figure 10.- Sketch of safety stops used t o  l i m i t  model motion. 
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(a )  Bomber alone, root  locked. 

Figure 13.- S t i l l - a i r  na tura l  vibration modes of  tes t  model. 
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Figure 13. - Continued. 
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Figure 13. - Continued. 
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Figure 13.- Concluded. 
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w9n3 
(a) View from upstream i n  tunnel. 

Figure 14.- Fighter model mounting for s t a t i c  t e s t s .  
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(b) View from downstream i n  tunnel. 6 7 9 7 l 4  

Figure 14. - Concluded. 
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